
Trans-dimensional MCMC tutorial

Hunter Akins

November 27, 2023

Contents

1 Introduction 2

2 Polynomial problem 2
2.1 Measurement model . 2
2.2 Vector notation . 2
2.3 Solving the problem . 3

3 Bayesian formulation of the polynomial problem 3
3.1 Prior distribution . 3
3.2 Likelihood function . 3
3.3 Bayes’ rule . 4
3.4 Example: Posterior distribution for prior and noise Gaussian distributions 4
3.5 Bayesian evidence for Gaussian linear model (Gaussian prior and Gaussian noise) . . 5
3.6 Summary . 6

4 Sampling 6

5 Markov chains 7
5.1 Background . 7
5.2 Equilibrium distribution . 7
5.3 Metropolis-Hastings for detailed balance . 8
5.4 Green’s formulation . 9

6 Metropolis-Hastings sampling for polynomial problem 10
6.1 Simulation with Gaussian prior and Gaussian noise 10
6.2 Simulation with Gaussian prior and exponential noise 11

7 Practical concerns of MCMC: adaptive proposal covariance matrix and parallel
tempering 11
7.1 Adaptive proposal distribution . 11
7.2 Parallel tempering . 14

8 Trans-dimensional sampling for the polynomial problem 14
8.1 Polynomial problem . 15

9 Reverse jump MCMC for polynomial regression 15
9.1 Sampler moves . 15

1

1 Introduction

This document details the development of a trans-dimensional sampler, motivated by a polynomial
regression problem.

2 Polynomial problem

This section introduces notation for the polynomial problem. By polynomial problem, we mean
the problem of inferring underlying polynomial coefficients m by analyzing measurements y of the
polynomial values corrupted with additive noise. Later we will compare the familiar linear inverse
solution to a more general Bayesian inference of the posterior distribution.

2.1 Measurement model

Assume that we have made N measurements, y1, y2, . . . , yN of a system state at times t1, t2, . . . , tN .
We have reason to believe that the measurements are corrupted with additive noise obeying some
probability distribution. We also have reason to believe that the underlying process f(t) that
drives the system state follows a polynomial model, the coefficients of which we would like to know:
f (t,m0,m1, . . . ,mk) =

∑k
l=0mlt

l. That is, the system state is perfectly determined by knowledge
of the polynomial coefficients mi and the time t. The data model for the measurements is

yi = f (ti,m0,m1, . . . ,mk) + ni =
k∑

l=0

mlt
l
i + ni (1)

where ni is the additive noise obeying from some joint distribution on the noise Pn1,n2,...,nN (n1, n2, . . . , nN).

2.2 Vector notation

Let’s store the polynomial coefficients in a vector m. Let t be the column vector of the N time
values [t1, t2, . . . , tN]T at which we have made measurements. We can use the notation tl to denote
this column vector with each of its elements raised to the power l.

Let
H =

(
t0 t1

... tk
)

(2)

be the N × k + 1 matrix with i th columns given by the time samples raised to the i th power.
Then, the collection of values f (ti) in a vector ŷ = (f (t1) f (t2) . . . , f (tN))T is linear in m

ŷ = Hm. (3)

Last, we need to collect the noise values ni into a vector n which is distributed according to the
joint distribution of the noise values. We now write the measurement model in vector form:

y = Hm+ n. (4)

Since the noise is random, the measurement is also random, with statistics determined by H,m,
and the statistics of m.

2

2.3 Solving the problem

At this point, the problem is as follows: ”Given measurement values in the vector y, tell me what
the polynomial coefficients in m are?” However, the randomness of n makes it impossible to know
precisely what m is.

Suppose we knew exactly what the noise realization n was. Then we could solve for m as

m = H−1(y − n), (5)

assuming thatH is invertible. This requires thatH be square, and thereforeN = k+1. IfN < k+1,
the problem is underdetermined and there are infinitely many choices for the polynomial coefficients
m that solve the problem. If N > k + 1, then presumably the measurements become redundant
and the problem is still solvable (assuming that the system truly follows the correct model). Linear
inverse theory addresses the problems where N ̸= k + 1.

The assumption that we know the noise realization n basically corresponds to very high signalto-
noise ratio. In this case we basically know that n is equal to 0 (i.e. that y − n ≈ y). Then we
can solve the problem using linear inverse theory. However, when we only know the distribution of
n, we can obtain a statistical description of m that conveys the information that the measurement
contains regarding the coefficients. This is what is meant by ”solving the problem”. That is:
”Given measurement values in y and a probability distribution on the noise n, give me a probability
distribution onm that captures the uncertainty in the measurements’ relationship to the coefficients
m. Linear inverse theory is also relevant here as it

3 Bayesian formulation of the polynomial problem

This section covers the Bayesian formulation of the polynomial problem. In this formulation of the
problem, there is presumed to be prior knowledge of the polynomial coefficients, represented as a
(joint) probability distribution on m. The polynomial problem is therefore to use the information
in the measurements y to update the distribution on m.

3.1 Prior distribution

We assume that there is a prior distribution on the polynomial coefficients pm(m). For example,
suppose that the system state is set by configuring some knobs on a user interface. The knobs
undergo thermal motion, and therefore wander from their initial setting in a random fashion. If
the variance of this thermal motion is known, we have a statistical distribution that reflects our
knowledge about their current state (given that we know their original configuration).

Continuing this example, suppose that all the knobs are originally set to 0 , and the thermal
motion is a Wiener process with a knob-dependent variance σ2

l . Let ΣM = diag
(
σ2
0, σ

2
1, . . . , σ

2
N

)
.

Then
pm(m) = exp

(
−mTΣ−1

M m
)
/
√
2π det (ΣM). (6)

Note that since ΣM is diagonal, the determinant is simply a product of individual variances
det (ΣM) =

∏k
l=0 σ

2
l . After a long time has passed, σl becomes very large, which limits the bias

that our prior knowledge asserts.

3.2 Likelihood function

The likelihood function py|m(y | m) = L(m) is the probability distribution function for making a
measurement y, given that the true polynomial coefficients are fixed at m. Somewhat confusingly,

3

the notation for L suppresses the dependence of the function on the measurements y. This is
because ultimately these will be ”given”, at which point the function is really only varying over
possible model state m.

For an given value of m, we have that y = Hm+ n. The probability of making a measurement
y is therefore the probability that the noise assumes a value y−Hm. If the noise has a probability
distribution function (pdf) pn(n), then the likelihood function is L(m) = pn(y−Hm). For example,
with a zero-mean white Gaussian noise model n ∼ N

(
0, σ2I

)
, the likelihood function is

L(m) = p(y | m) = exp

(
−∥y −Hm∥2

2σ2

)
/(2πσ)N/2. (7)

3.3 Bayes’ rule

Ultimately, we would like to sample the posterior probability distribution of the polynomial coef-
ficients m, given prior information about m in pm(m) and the information from the measurement
in the likelihood function L = py|m(y | m). The posterior distribution of m conditioned on the
measurements y is given in terms of the likelihood and the prior distribution by Bayes’ rule

pm|y(m | y) =
py|m(y | m)pm(m)

py(y)
. (8)

The denominator py(y) =
∫
M py|m(y | m)pm(m) is the ”evidence” and captures how likely the

mesaurement y is. pm(m) is the prior distribution of m : it is independent of the measurement
value y. We also recognize the likelihood function in the numerator L(m) = py | m(y | m).

In terms of the likelihood function L the posterior distribution of m is

pm|y(m | y) = L(m)pm(m)

c
(9)

where I have introduced the constant c = py(y) to denote the evidence. In MCMC sampling
methods, the evidence need not be known to obtain samples from the posterior distribution.

3.4 Example: Posterior distribution for prior and noise Gaussian distributions

In the case that both the noise follows a Gaussian distribution and the prior model uncertainty fol-
lows a Gaussian distribution, the posterior distribution will be a product of two Gaussian functions
and therefore is a Gaussian as well (this is a well-known result). Using results from Kay (1993),
Chapter 10, we have that the mean of the posterior Gaussian is

E(m | y) = ΣMHT
(
HΣmHT + σ2I

)−1
(y) (10)

and the covariance is

Σm|y = ΣM − ΣMHT
(
HΣMHT + σ2I

)−1
HΣM . (11)

This is a useful result for validating our code, since we can check that our sampler provides
samples with the appropriate mean and covariance.

4

3.5 Bayesian evidence for Gaussian linear model (Gaussian prior and Gaussian
noise)

Consider a model labeled by k and data y. Bayes’ rule assigns the posterior distribution to states
θk

p(θk|k, y) =
p(θk|k)p(y|k, θk)

p(y|k) . (12)

Usually the model dependence of Bayes’ rule is suppressed (there is only one model under con-
sideration). If we have multiple models indexed by k with a prior distribution p(k), the posterior
distribution over models is also given by Bayes rule

p(k|y) = p(y|k)p(k)
p(y)

. (13)

Note that if we have two models, we can find the ratio of their probabilities by calculating

p(k1|y)
p(k2|y)

=
p(y|k1)p(k1)
p(y|k2)p(k2)

. (14)

For the Gaussian linear model, the data is related to the parameter by a linear model H:

y = Hθk + n (15)

where the model has prior mean 0 and covariance P and noise has covariance Σ.
To get the evidence for a given model, we can work backwards from the posterior given by

Bayes’ Rule:

p(θ|y) = Z−1 exp
{
−1

2

[
θTP−1θ + (y −Hθ)TΣ−1(y −Hθ)

]}
(2π)(k+n)/2 det(P)1/2 det(Σ)1/2

(16)

Rearrange to obtain

p(θ|y) = Z−1
exp

{
−1

2

[
θTΣ−1

p θ − 2θT (HTΣ−1y) + yTΣ−1y
]}

(2π)(k+n)/2 det(P)1/2 det(Σ)1/2
. (17)

where
Σp = (P−1 +HTΣ−1H)−1. (18)

We now want to complete the square with

θTΣ−1
p θ − 2θT (HTΣ−1y) + yTΣ−1y = (θ − h)TA(θ − h) + k. (19)

We can use the formula
vTAv + vT b+ c = (v − h)TA(v − h) + k (20)

with h = −1
2A

−1b and k = c − 1
4b

TA−1b applied to v = θ, A = Σ−1
p , b = −2HTΣ−1y, and

c = yTΣ−1y. We end up with

(θ − ΣpH
TΣ−1y)TΣ−1

p (θ − ΣpH
TΣ−1y) + yTΣ−1y − yTΣ−1HΣpH

TΣ−1y. (21)

Introduce µp = ΣpH
T y as the posterior mean and Σp is the posterior covariance. Then this

expression can be written

5

(θ − µp)
TΣ−1

p (θ − µp) + yTΣ−1y − µpΣ
−1
p µp. (22)

Then

p(θ|y) = Z−1 exp

{
−1

2
yTΣ−1(y −Hµp)

}
exp

{
−1

2

[
(θ − µp)

TΣ−1
p (θ − µp)

]}
(2π)(k+n)/2 det(P)1/2 det(Σ)1/2

. (23)

Integrating over θ and enforcing normalization of the posterior we get

1 = Z−1 exp

{
−1

2
yTΣ−1(y −Hµp)

}
(2π)k/2 det(Σp)

1/2

(2π)(k+n)/2 det(P)1/2 det(Σ)1/2
. (24)

The evidence is therefore

Z = exp

{
−1

2

[
yTΣ−1y − µT

pΣ
−1
p µp

]} det(Σp)
1/2

(2π)n/2 det(P)1/2 det(Σ)1/2
. (25)

3.6 Summary

The polynomial problem can be framed in terms of Bayesian inference as using the measurement
y and noise statistics to transform a prior distribution on m to a posterior distribution. The mean
and covariance have analytic formulas given in equations (10) and (11). The evidence for a model
also has a closed form (25).

4 Sampling

In the previous section we laid out a polynomial regression problem, framing it in the context of
Bayes’ theorem as the problem of solving for a posterior distribution. This section asserts that
”solving for a posterior distribution” can be framed as ”sampling from a distribution”.

Assuming that the model is correctly specified and the noise statistics are correctly specified,
then the posterior distribution function pm|y(m | y) gives this statistical description and contains all
of the information about the underlying polynomial coefficients that we can obtain by combining our
measurement y and our prior knowledge. The posterior distribution can then be used to calculate
a ”best” set of polynomial coefficients given some desired objective. For example, the expected
value of m is given by

E(m) =

∫
M

mpm|y(m | y)dm (26)

and is the estimate of m that has the minimum variance. We could also calculate the expected
value of the system state f(t) at a time t as

E(f(t)) =

∫
M

f(t,m)pm|y(m | y)dm. (27)

Note that these values require integration of a function times the posterior distribution. It is
often difficult to obtain a closed form, analytic function for the posterior distribution. Monte Carlo
integration uses samples {mi} drawn from the posterior distribution to approximate these integrals
in a sum

E(a(m)) ≈ 1

N

∑
i

a (mi) . (28)

6

As the number of samplesN → ∞, the error in the approximation to the integral goes to zero. In the
absence of a perfect, analytic posterior distribution, one can therefore make due with (potentially
a lot of) samples drawn from the posterior distribution.

There are many ways to sample a distribution (importance sampling, nested sampling, particle
filtering, and more). Markov Chain Monte Carlo (MCMC) is a way to draw samples from a
distribution when a user has a means of computing the likelihood function and prior distribution.
It is supposed to be the go-to method for sampling high dimensional distributions. It draws the
samples by constructing a Markov chain whose equilibrium distribution converges to the desired
posterior probability distribution.

5 Markov chains

The goal of Markov Chain Monte Carlo is a) to design a Markov Chain whose equilibrium distri-
bution is the desired posterior distribution πx(x), b) generate a random realization of the chain,
and c) use the chain samples to calculate expectations via Monte Carlo integration.

5.1 Background

A Markov chain is a random sequence of points x0, x1, · · · ∈ X , where the probability distribution
of the nth point πxn|x0,x1,...,xn−1

(xn | x0, x1, . . . , xn−1) = πxn|xn−1
(xn | xn−1) ≡ T (xn, xn−1). That

is, the probability distribution of a the nth point in the sequence depends only on the previous
point. Homogeneous Markov chains are such that the transition probability distribution T does
not change with n (”time”). A Markov chain is completely specified by an initial distribution
x0 ∼ αx0 (x0), and the transition distribution T (xn, xn−1).

Example 1: A discretely sampled Wiener process (Brownian motion) is described by a Markov
chain. x ∈ R.

T (xn, xn−1) = exp
(
− (xn − xn−1) /2σ

2
)
/
√
2πσ (29)

Typically one considers a known initial point x∗, in which case αx0 (x0) = δ (x0 − x∗).
Example 2: Sequence of independent coin flips as a Markov chain. x ∈ {H,T}. Initial measure

is αx0 (x0) = 1/2 for x = H and 1/2 for x = T .

T (xn, xn−1) =

{
1
2 if xn−1 = H
1
2 if xn−1 = T

(30)

Equipped with a means of sampling from T, one draws a random sample x0 from an initial
distribution, then draw a new random sample x1 by sampling T (x1, x0), then draw a new random
sample x2 by sampling T (x2, x1), and so on to generate a random sequence x0, x1, . . . , xN . Example
1 will generate a realization of the ”drunkards walk” (the motion of a colloid in 1-d static medium).
Example 2 will generate a realization of a sequence of coin tosses with an unbiased coin.

5.2 Equilibrium distribution

Under certain conditions, the samples of a Markov chain will be stationary meaning that each sam-
ple xn follows a distribution πxn (xn). Note that this distribution is different from the conditional
probability πxn|xn−1

(xn | xn−1). A sufficient condition for an irreducible Markov chain to have an
equilibrium (or ”invariant” or ”stationary”) distribution πx(x) if

πx(x) =

∫
X
πx

(
x′
)
T
(
x, x′

)
dx′. (31)

7

When the chain is ”irreducible”, the chain converges to this distribution irrespective of the
initial distribution α. The equilibrium distribution is the probability distribution of the nth sample
in the chain if you do not have information on the previous sample. Another way to understand the
relationship between the stationary distribution and the chain is that the normalized histogram of
samples from the chain will converge to the probability distribution π. In general, the chain samples
are correlated, so subsequent samples do not represent independent samples from the equilibrium
distribution.

Detailed balance is a stronger, sufficient condition for a chain to converge to a distribution π.
It is as follows:

T
(
x′, x

)
πx(x) = T

(
x, x′

)
πx

(
x′
)
. (32)

Integrating both sides over x′ and using the fact that T must be normalized

π(x)

∫
X
T
(
x′, x

)
dx′ = π(x) =

∫
X
T
(
x, x′

)
π
(
x′
)
dx′ (33)

proves that its a sufficient condition for convergence to π.
An equivalent statement of detailed balance, ”integrated detailed balance”, is that∫

(x,x′)∈A×B
π(x)T

(
x′, x

)
dx dx′ =

∫
(x,x′)∈A×B

π
(
x′
)
T
(
x, x′

)
dx dx′ (34)

for all Borel sets A,B ⊂ X . This is relevant for the Metropolis-Hastings-Green algorithm.

5.3 Metropolis-Hastings for detailed balance

To design a Markov chain that satisfies detailed balance for a given target distribution π, the
Metropolis-Hastings algorithm constructs a transition probability T (x′, x) in two steps.

The first step draws a candidate next Markov chain sample x′ using a convenient (i.e. easy
to sample) proposal distribution q (x′, xn−1). A common choice is a Gaussian with mean equal to
xn−1 and fixed variance.

The second step is to randomly accept or reject the proposed step x′ in such a way as to ensure
detailed balance is assured. This will be done with an auxiliary distribution α (x′, xn−1) :

α
(
x′, xn−1

)
= min

{
1,

π (x′) q (xn−1, x
′)

π (xn−1) q (x′, xn−1)

}
. (35)

The next step in the chain xn equals x′ if accepted or xn−1 if rejected.
The transition probability of the associated chain T (xn | xn−1) is therefore the probability of

proposing xn from xn−1 and accepting it, or, if xn = xn−1, the probability of rejecting a proposed
move (the complement of accepting any move):

T (xn, xn−1) = q (xn, xn−1)α (xn, xn−1) +

(
1−

∫
x′
α
(
x′, xn−1

)
q
(
x′, xn−1

)
dx′

)
δ (xn − xn−1) .

(36)
The first term above is the probability of proposing and accepting xn, and the second term is

the probability of a rejection. One can directly verify that detailed balance is satisfied by inserting
the transition kernel (22) into the detailed balance equation (18).

The class of Markov chains associated with the Metropolis-Hastings transition probability (re-
gardless of their initial sample distribution) will converge to the equilibrium distribution π. There-
fore, all that is required to draw samples from the distribution π is the ability to sample from the
proposal q, the ability to evaluate the π, and possibly infinite computation time.

8

5.4 Green’s formulation

Green [1, 2] introduced the reversible jump Metropolis-Hastings algorithm, which is a proposalac-
ceptance algorithm that allows one to sample across multiple models with potentially differing
numbers of dimensions. It is also known as the Metropolis-Hastings-Green algorithm. I found that
the derivations in the cited works were a bit challenging for me, as I have limited familiarity with
measure theory and the Radon-Nikodyn theorem. I also found the notation to be opaque. I hope
what follows is a more painstaking but ultimately more clear description of the description.

The derivation relies on ”integrated detailed balance” described above. A step in the chain is
a jump from one point in x ∈ X to another (possibly equal) point x′ ∈ X .

The transition probability for the reversible jump Markov chain, as in Metropolis-Hastings, is
constructed via a proposal followed by an accept-reject stage:

T
(
x′, x

)
= q

(
x′, x

)
α
(
x′, x

)
+

(
1−

∫
z
q(z, x)α(z, x)

)
δ
(
x− x′

)
. (37)

For this transition kernel, the integrated detailed balance equation (20) reads∫
(x,x′)∈A×B

π(x)q
(
x′, x

)
α
(
x′, x

)
dx dx′ =

∫
(x,x′)∈A×B

π
(
x′
)
q
(
x, x′

)
α
(
x, x′

)
dx dx′. (38)

Note here that we need note include the rejection, since it contributes the same value to each
side (an integral over A ∩B with equal integrand).

Green provides a ”constructive representation” of the trans-dimensional sampler that moves the
”randomness” part of proposals to an auxiliary random variable, and then considers a deterministic
function of the value of the random variable and the current state (this will become more clear
shortly). In Metropolis-Hastings, we put the ”randomness” in the proposal distribution q (x′, x)
which is parameterized by the state x. In reversible jump, we place the randomness in a random
variable u with distribution g(u), and propose a new state deterministically as (x′, u′) = h(x, u) =
(h1(x, u), h2(x, u) . With this scheme in place, consider the probability of proposing a jump from x
to x′ : q (x′, x) is now specified by the probability distribution g(u) (for the specific u required to
move from x to x′). We will introduce the notation U to refer to the set that is mapped to the set
B under the transformation h1. Implicit in this is a dependence on x, which is suppressed in the
notation. This allows one to move the integral over x′ ∈ B in the left hand side of equation (24) to
an integral over u ∈ U :∫

(x,x′)∈A×B
π(x)q

(
x′, x

)
α
(
x′, x

)
dx dx′ =

∫
(x,u∈A×U

π(x)g(u)α
(
x′(x, u), x

)
dx du. (39)

If we assume that the mapping from x, u → (x′, u′) is a diffeomorphism, then I can perform the
integral on the right hand side of equation (24) over x, u as well! However, we need to use the
change-of-variables formula to preserve volume in the integral: changing from dx′du′ to dx du, we
need to include the determinant of the Jacobian transformation

|Jh| =
∣∣∣∣∂x′, u′∂x, u

∣∣∣∣ = ∣∣∣∣[∂h1
∂x

∂h1
∂x

∂h2
∂x

∂h2
∂u

]∣∣∣∣ (40)

Then, the integrated detailed balance equation becomes∫
(x,u)∈A×U

π(x)g(u)α
(
x′(x, u), x

)
dx du =

∫
(x,u)∈A×U

π
(
x′(x, u)

)
g′
(
u′(x, u)

)
α
(
x′(x, u), x

) ∣∣∣∣∂x′, u′∂x, u

∣∣∣∣ dx du.

(41)

9

Finally, then, we get that to satisfy detailed balance, it suffices to satisfy

π(x)g(u)α
(
x′(x, u), x

)
= π

(
x′(x, u)

)
g′
(
u′(x, u)

)
α
(
x, x′(x, u)

) ∣∣∣∣∂x′, u′∂x, u

∣∣∣∣ (42)

If we choose

α
(
x′, x

)
= min

{
1,

π (x′) g′ (u′)

π(x)g(u)
| ∂x

′, u′

∂x, u

}
(43)

then we will satisfy detailed balance.
Finally, in what follows, there will be a menu of ”moves” that the chain can make. Each move

comes with proposal distributions characterized by g(u) and g′ (u′), as well as a diffeomorphism
x′(x, u), u′(x, u). The specific move will be identified with an index m and selected randomly
according to some distribution jm(x) that may depend on the state x. Given that move m is
attempted, the acceptance probability becomes

αm

(
x′, x

)
= min

{
1,

π (x′) g′m (u′) jm (x′)

π(x)gm(u)jm(x)

∣∣∣∣∂x′, u′∂x, u

∣∣∣∣} . (44)

The dependence of the Jacobian on the move type is suppressed for notational convenience.

6 Metropolis-Hastings sampling for polynomial problem

We will first implement Metropolis-Hastings sampling for the polynomial problem when we know
the number of polynomial coefficients. The number of coefficients is set to 5 . The number of
samples N = 100. The time grid is uniformly spaced from t = −1 to t = 1. Data is generated
by randomly first selecting a realization of the polynomial coefficients mtrue and using these to
generate the state values ytrue = Hmtrue . Then, noise is randomly generated according to the
distribution under consideration and is added to the measurements to get y = ytrue + n.

6.1 Simulation with Gaussian prior and Gaussian noise

Here we have a Gaussian prior distribution on the coefficients and a Gaussian distribution for the
noise. Let’s assume an equal variance for the coefficients σ2

0 and a (different) equal variance for the
noise σ2

n. Let’s also assume both distributions are zero-mean. Then, the likelihood distribution is
Gaussian

L(m) = p(y | m) = exp

(
−∥y −Hm∥2

2σ2
n

)
/ (2πσn)

N/2 . (45)

The posterior distribution is also Gaussian (see section 3.4), with a mean and covariance that can
be calculated from H, y, σ2

0 and σ2
n. The problem is therefore to sample this multivariate Gaussian.

Since we can actually compute the posterior mean and covariance, this will be a good example to
check our sampler.

The Metropolis-Hastings algorithm requires only a proposal distribution to be selected (and
will work regardless of the distribution chosen). Here we will use a spherical Gaussian proposal
distribution centered at the previous sample with variance σ2 : q (x′, x) ∼ N

(
x, σ2

)
. The variance

of the proposal Gaussian is tuned to obtain a reasonable acceptance ratio (see Gelman, Roberts and
Gilks 1997 [3]). I ultimately settled on a proposal variance of σ2 = (.02)2. Note that the acceptance
ratio doesn’t affect the asymptotic behavior of the chain. However, we can’t just wait for infinity
to come around, so it has a practical effect. The integrated autocorrelation time is the relevant

10

statistic for considering the independence of chain samples (see the well-known Sokal notes from
1996, which can be found online). The initial distribution α0(x) also doesn’t affect the equilibrium
distribution. Here we will just draw a sample from the prior distribution to start the chain.

I run the chain for 100000 steps. I discard the first 10000.
The results of this simulation are shown in Figure 1.

6.2 Simulation with Gaussian prior and exponential noise

Now we consider that the noise is independent Laplacian distributed with mean 0 and scale pa-
rameter b : pni (ni) =

1
2b exp (− |ni| /b). The log-likelihood distribution in this case is

logL(m) = p(y | m) = −
N−1∑
i=0

|yi − (Hm)i|
b

−N log(2b) (46)

I fix b = 1. I use a Gaussian proposal once again, though this time it has a proposal variance
of σ2 = (.05)2. I run the chain for 100000 steps. I discard the first 10000. I also use the standard
deviation of the noise to get the approximate Gaussian noise distribution. I can use this to compare
the results from linear inverse theory using the incorrect assumption of Gaussianity of the noise.
The results are shown in Figure 2.

7 Practical concerns of MCMC: adaptive proposal covariance ma-
trix and parallel tempering

In the previous section I showed a simply Metropolis-Hastings MCMC solution to the polynomial
problem. Theoretically, M-H theoretically guarantees that the chain will asymptotically approxi-
mate the posterior distribution. Practically, however, I would like the chain to not take forever.
A ”good” chain therefore is one that produces the most ”independent” samples in the shortest
amount of time.

I will offer two practical tricks to getting a good chain: adaptive proposal [4] and parallel
tempering (see Miasojedow 2013 for a nice discussion [5]).

7.1 Adaptive proposal distribution

In order to draw samples from a Gaussian distribution using MCMC, the optimal proposal distri-
bution is a scaled version of the desired Gaussian’s covariance matrix (Need to check this result).
That is, if the Gaussian to sample has covariance matrix Σ, then the optimal proposal distribution
is sDΣ. Here, optimal means that the chain produces the most effectively independent samples per
step. Gelman, Gilks, and Roberts (1997) [3] that contains a derivation of the asymptotic (in the
dimension of the Gaussian) optimality for a chain sampling a Gaussian. In particular, the chain
should have an acceptance ration of 0.23 , and sd = (2.38)2/dim.

When we sample a posterior distribution, we rarely know the posterior covariance at the outset
(or even if the distribution is Gaussian). However, as our chain explores the space, it is converging
to the true distribution. Therefore, after a while, we can use our chain samples themselves to
estimate the posterior covariance, and then use this is our proposal. Continually updating the
proposal covariance using the chain samples is called adaptive Metropolis-Hastings [4]. It breaks
homogeneity of the chain. However, asymptotically the sample covariance matrix of the samples
converges, so the chain becomes asymptotically homogeneous.

11

Gaussian polynomial regression MH simulation

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Time

−25

−20

−15

−10

−5

0

y

’True’

Msmt.

Mean

2 std

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Coeff. power

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

C
o
eff

.
va

lu
e

true

posterior mean

estimated

0 20000 40000 60000 80000

Iteration

0.2165

0.2170

0.2175

0.2180

0.2185

0.2190

0.2195

0.2200

A
cc

ep
t.

ra
ti

o

0 20000 40000 60000 80000

Iteration

−28

−26

−24

−22

−20

−18

−16

L
og

p
ro

b
s

0 2 4
0

1

2

3

4

5
Posterior covariance

0 2 4

Sample covariance

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

Figure 1: Metropolis-Hastings sampling results. From left to right, top to bottom we have: 1. True
polynomial values in black, measured values in blue. 2. True polynomial coefficients, posterior
mean using linear inverse theory, and sample mean from MCMC run (with 2 sigma error bars).
3. Acceptance ratio vs. iteration. 4. Log probability of chain as function of sample number. 5.
Comparison of the sample covariance matrix and the posterior covariance matrix from linear inverse
theory.

12

Laplacian polynomial regression MH simulation

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Time

−0.5

0.0

0.5

1.0

1.5

2.0

y

’True’

Msmt.

Mean

2 std

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Coeff. power

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

true

gaussian est.

estimated

0 20000 40000 60000 80000

Iteration

0.254

0.256

0.258

0.260

0.262

0.264

A
cc

ep
t.

ra
ti

o

0 20000 40000 60000 80000

Iteration

−34

−32

−30

−28

−26

−24

−22

−20

−18

L
og

p
ro

b
s

Figure 2: Metropolis-Hastings sampling results. From left to right, top to bottom we have: 1. True
polynomial values in black, measured values in blue. 2. True polynomial coefficients, posterior
mean using linear inverse theory, and sample mean from MCMC run (with 2 sigma error bars).
3. Acceptance ratio vs. iteration. 4. Log probability of chain as function of sample number.
Note that in the top right figure, the red crosses denote the linear inverse best guess under the
false assumption of Gaussian noise. The green cross is the minimum variance estimate from the
posterior samples from Metropolis-Hastings and is closer to the true values (black dots).

13

I’m not a statistician, so these considerations are above my paygrade. I use a simple heuristic
in designing my chain. First, I take a simple uncorrelated Gaussian prior Σ0 = diag

(
σ2
1, σ

2
2, . . .

)
on my parameters. Then, I choose as my proposal distribution g (x′, xn−1) ∼ N (xn−1, γΣ0 . For
a given value of γ, I can run the chain for a while and compute the acceptance ratio. I then try
and find the value γ∗ that minimizes the absolute difference between the acceptance ratio and 0.23
. I’m not very precise here. Anywhere between 0.1 and 0.5 is fine by me.

Now, I run my chain say N samples with my proposal as g (x′, xn−1) ∼ N (xn−1, γ∗Σ0 . I use
these N samples to estimate the sample covariance matrix

Σ̂ =
1

N − 1

N∑
i=1

(xi − x̂) (47)

Finally, I use as my proposal covariance matrix sDΣ̂, where sd = (2.38)2/dim.
This seems to work well, at least in lower dimensions. It also avoids the question of nonhomo-

geneity.

7.2 Parallel tempering

For a multimodal distribution, chains will often spend a lot of time in a single mode. Again, they
will asymptotically make their way to all of the modes and sample all of them well. Practically I
would like them to do that today. The go-to trick to deal with this issue is parallel tempering. See
Sambridge (2013) [6] for a nice comprehensive presentation.

Basically one considers sampling a ”tempered” version of the distribution. Suppose we want to
sample multimodal distribution π(x). Then, we also run chains that sample distributions πT (x) =
π1/T (x). Here T ≥ 1 is the temperature. The effect of the power 1/T is nicely demonstrated on a
Gaussian. If π(x) is Gaussian with variance σ2, then πT (x) = π1/T (x) is Gaussian with variance
Tσ2. Therefore, the effect of raising the temperature is to flatten out the peaks in a distribution.

The parallel part comes in to play by basically running, in parallel, chains at different temper-
ature. Then, swaps are proposed between chains of different temperatures and accepted with a
probability that maintains detailed balance (see Sambridge [6] for detailed details).

The cold chain therefore will tend to hang out in a single mode sampling around. The hotter
chains spend more time visiting different modes. Occasionally the hot chains will swap with the
cold chain, leaving it in a new mode that it then explores.

It is important for trans-dimensional sampling with birth-death moves. When you propose a
new birth move, you need to draw a random value for the new dimension variable. Since the chain
is typically found in high-likelihood regions, it’s unlikely that the random new initial value will
be likely enough for acceptance. Therefore you have trouble getting good acceptance ratios for
birth and death moves. You run a hot chain that is more likely to accept birth-death moves, and
therefore sample across models. The cold chain then explores each model.

8 Trans-dimensional sampling for the polynomial problem

Suppose that the order of the polynomial k is in fact unknown. Rather we have some prior
knowledge on the order, given as a probability distribution p(k). This gives us a set of possible
models for the data, which we can index by the polynomial order k. We will denote a model state
vector for the k th model as mk. We would ultimately like to obtain a posterior distribution on the

14

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Time

−25

−20

−15

−10

−5

0

y

true model

msmt

mean

2 std

2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

14000

16000

Figure 3: Left: Posterior mean curve from trans-dimensional sampling. Right: Histogram of
sample dimension (polynomial degree plus one). Note that most of the samples are at the correct
model dimension of five (polynomial degree four). Comparison with analytic form of evidence shows
good agreement.

models, as well as the model state, which is connected to the measurement by Bayes’ rule

pmk,k|y (mk, k | y) =
py|mk,k (y | mk, k) pmk,k (mk, k)

py(y)
. (48)

The normalization in the denominator has to sum over model indices k and integrate over states

py(y) =
∑
k′

∫
Mk′

p
(
y | mk′ , k

′) . (49)

We can identify the probability distribution py|mk,k (y | mk, k) as being proportional to the
likelihood function L (mk, k) which now also depends on the model order k.pmk,k (mk, k) is the
prior on mk, k.

8.1 Polynomial problem

For the polynomial problem, the coefficients for a degree k polynomial live in Rk+1. Suppose the
considered polynomial degrees are specified in the countable set K. The possible states live in
X = ∪k∈K

(
{k} ×Rk+1

)
. By appending the degree to the state we can always identify the degree.

Our notation above used
m = m0,m1, . . . ,ml. (50)

To identify order, we will use a subscript:

mk = k,m0,m1, . . . ,mk. (51)

9 Reverse jump MCMC for polynomial regression

9.1 Sampler moves

We need to define the moves (proposal steps) that our chain will perform.

15

The first is a perturb move, which maintains the order fixed and simply perturbs the state with
proposal g. The diffeomorphism is simply x′, u′ = x, u so its Jacobian determinant is one. Here the
acceptance distribution is

αbirth

(
x′, x

)
= min

{
1,

π (x′) g (u′) jpert (x′)

π(x)g(u)jpert (x)

}
. (52)

Assuming that the probability of performing a perturb move is independent of position, then
the j terms will cancel.

The second is a birth-death move, which in one direction moves to one order higher than the
current state order and in the reverse direction moves to one order lower. Suppose the current
state is k. The k state parameters are still meaningful when we jump up to the next order, so it
makes sense for our birth diffeomorphism h to preserve those values. We can simply generate a
single number u according to a distribution g(u) and use that for the value of the new parameter
mk+1. The reverse move would just assign the value of mk+1 to the value of 0 with probability 1.
The reverse move is referred to as a death move. Due to the simple mapping used, the Jacobian
of h is just the identity matrix, so it has determinant 1. Explicitly, we have that the birth move
is mk = k,m0, . . . ,mk → m′

k+1 = (k + 1),m0, . . . ,mk, u and the reverse move is mk+1 = k +
1,m0, . . . ,mk+1 → m′

k = k,m0, . . . ,mk. The acceptance distribution for the birth move is therefore

αbirth

(
x′, x

)
= min

{
1,

π (x′) (1)jdeath (x′)

π(x)gbirth(u)jbirth (x)

}
. (53)

We see here that strictly trans-dimensional moves come in pairs, since the reverse move is
necessarily trans-dimensional. The acceptance distribution for the reverse move is

αdeath

(
x′, x

)
= min

{
1,

π (x′) gbirth (u)jbirth (x′)

π(x)(1)jdeath (x)

}
(54)

16

	Introduction
	Polynomial problem
	Measurement model
	Vector notation
	Solving the problem

	Bayesian formulation of the polynomial problem
	Prior distribution
	Likelihood function
	Bayes' rule
	Example: Posterior distribution for prior and noise Gaussian distributions
	Bayesian evidence for Gaussian linear model (Gaussian prior and Gaussian noise)
	Summary

	Sampling
	Markov chains
	Background
	Equilibrium distribution
	Metropolis-Hastings for detailed balance
	Green's formulation

	Metropolis-Hastings sampling for polynomial problem
	Simulation with Gaussian prior and Gaussian noise
	Simulation with Gaussian prior and exponential noise

	Practical concerns of MCMC: adaptive proposal covariance matrix and parallel tempering
	Adaptive proposal distribution
	Parallel tempering

	Trans-dimensional sampling for the polynomial problem
	Polynomial problem

	Reverse jump MCMC for polynomial regression
	Sampler moves

